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Abstract

Domain-expert productivity programmers desire scalable applica-
tion performance, but usually must rely on efficiency programmers
who are experts in explicit parallel programming to achieve it.
Since such programmers are rare, to maximize reuse of their work
we propose encapsulating their strategies in mini-compilers for
domain-specific embedded languages (DSELSs) glued together by a
common high-level host language familiar to productivity program-
mers. The nontrivial applications that use these DSELs perform
up to 98% of peak attainable performance, and comparable to or
better than existing hand-coded implementations. Our approach is
unique in that each mini-compiler not only performs conventional
compiler transformations and optimizations, but includes impera-
tive procedural code that captures an efficiency expert’s strategy
for mapping a narrow domain onto a specific type of hardware. The
result is source- and performance-portability for productivity pro-
grammers and parallel performance that rivals that of hand-coded
efficiency-language implementations of the same applications. We
describe a framework that supports our methodology and five im-
plemented DSELSs supporting common computation kernels.

Our results demonstrate that for several interesting classes of
problems, efficiency-level parallel performance can be achieved by
packaging efficiency programmers’ expertise in a reusable frame-
work that is easy to use for both productivity programmers and
efficiency programmers.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Frameworks; D.1.3 [Programming Techniques]: Parallel
programming

General Terms Design, Languages, Performance

Keywords  Asp, SEJITS, Python, Domain-Specific Languages

1. Introduction

Domain-expert productivity programmers must choose between
writing high-level code or working with low-level efficiency pro-
grammers who understand details of hardware in order to obtain
good parallel performance. Instead, we propose that these expert ef-
ficiency programmers encapsulate their knowledge of how to make
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class Laplacian3D(StencilKernel):
def kernel(self, in_grid, out_grid):
# the following lines are translated into
# parallel C++ loops by the compiler & run
for x in out_grid.interior_points():
for y in in_grid.neighbors(x, 1):
out_grid[x] = out_grid[x] + (1/6)*in_grid[y]

Figure 1. Python source code for 3D divergence kernel using the stencil
DSEL. The user may specify grid connectivity or use defaults provided by
the specializer (not shown).

computations in a particular domain fast and parallel into compilers
for domain-specific embedded languages (DSELs'). These DSELs
are coordinated and embedded into a high-level programming lan-
guage such as Python that can be used by productivity program-
mers to write their own programmers, but obtain the performance
benefits of low-level machine-aware code.

We have created a framework called Asp that helps efficiency
programmers write DSEL compilers (which we call specializers)
by abstracting away many common tasks, including code genera-
tion, code caching, and just-in-time compilation. Using this frame-
work, we have built five DSELs in disparate areas such as stencil
computations, statistical machine learning, and linear algebra; each
of these DSEL compilers are being used in nontrivial applications
that achieve performance portability across platforms and obtain
peak performance that rivals low-level hand-coded performance for
the domain.

2. Asp Infrastructure & Walkthrough

The Asp infrastructure provides a number of capabilities for build-
ing a DSEL compiler, which can be used as building blocks by
the DSEL developer. Specializers are typically used by subclass-
ing a particular class and providing a few functions, which follow
documented restrictions based on the specializer’s capabilities. On
instantiation, the function definitions are introspected and a Python
parse tree is generated from them by the Asp framework. At ex-
ecution time, this tree is then transformed into a DSEL-specific
intermediate form, which encapsulates the semantics of the ex-
pressed computation— we call this the semantic model (SM). Fur-
ther tree transformation phases occur, optionally depending on as-
pects of the input to the specialized function. At the end of these
phases, the domain-specific code has been turned into low-level op-
timized code that is automatically compiled, linked, and run, using

! Following Hudak’s [3] terminology, we use the acronym DSEL for
Domain-Specific Embedded Languages to distinguish them from stan-
dalone or “external” DSLs.




Framework Feature

| Used by Specializers | Provided by |

Parse Python source to AST Stencil, BSP, KDT Asp/Python
Generic lowering translations (e.g. arithmetic expressions) Stencil, BSP, KDT Asp
Interrogate available hardware/software Stencil, GMM Asp
Generic optimizations Stencil, BSP Asp
C++ AST Stencil, BSP, KDT Asp
Instantiate templates GMM, KDT, Akx Asp
Compile/Invoke C++ with Caching All except KDT Asp/CodePy
Tree visitor and translation Stencil, BSP, KDT Asp
Tree grammar definition and checking Stencil Asp
Fallback to Python version All Asp
Auto-tuning & Timing Support Stencil, GMM, Akx Asp

Specializer Application Logic | Tmpl. | Targets Performance Remarks

Stencil (structured grid) Bilateral image filtering 656 0 C++/OpenMP, 91% of achievable peak based on
Cilk+ roofline model [6]

Gaussian mixture model Speech diarization 800 3600 CUDA, Cilk+ CPU & GPU versions fast enough to re-

(GMM) training place original C++/pthreads code

Graph algorithms  with | Graph500 benchmark 325 0 C++/MPI 99% of performance of handcoding in

KDT/CombBLAS C++

Graph algorithms in BSP Social Network Analytics 250 280 C++ 56-120% of performance of native C++

style Boost version

Matrix powers (AFx) Conjugate gradient solver 200 2000 C/pthreads 2-4 times faster than SciPy

Figure 2. Top: Features of the Asp framework and which specializers use them. Botrom: For each specializer we report the LOC of logic, LOC of templates,
target languages, and a summary of the performance of the Python+SEJITS application compared to the original efficiency-language implementations.
Specializer logic is Python code that manipulates intermediate representations in preparation for code generation and templates are static efficiency-language
“boilerplate” files into which generated code is interpolated. Our framework itself comprises 2094 LOC.

the CodePy (http://mathema.tician.de/software/codepy)
library. Optionally, many versions can be generated in order to en-
able auto-tuning.

An overview of the different features of the Asp framework is
shown in Figure 2 (top), as well as which specializers use which
capabilities. The next section gives more details about the different
DSELs we have implemented.

3.

We have implemented five specializers using the Asp framework.
The first is a DSEL for stencil computations, which operate on a
multidimensional grid and update each point with a function of a
subset of its neighbors. We have also implemented two DSELs for
graph computations: one using the Knowledge Discovery Toolbox
framework (KDT, kdt.sourceforge.net) which casts graph al-
gorithms as linear algebra[1]; and one for bulk-synchronous-style
graph algorithms similar to Pregel [4]. We have also built auto-
tuned libraries as specializers for training Gaussian Mixture Mod-
els [2] and for communication-avoiding A*z, a building block in
communication-avoiding Krylov subspace methods for solvers [5].

The five specializers, applications, and performance results are
summarized in Figure 2 (bottom). Overall, the combination of auto-
tuning and just-in-time compilation allows the creation of DSELs
that enable non-expert programmers to write Python code that runs
as fast or faster than existing low-level libraries or hand-tuned code
in the domain in question.

Implemented DSELs & Performance Results

4. Conclusion

With our Asp infrastructure for building DSEL compilers, DSEL
developers can leverage the library to perform many common tasks.
Our infrastructure is publicly available (http://github.com/
shoaibkamil/asp), and a number of DSELs are under develop-
ment. Ultimately, as the number of DSELSs increases, parallelism
and high performance will be even more accessible to domain sci-
entists for use in their computations while still programming in
high-level languages.
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